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SIAM (Satellite Image Automatic Mapper) 

Process and Product Description 

 

Problem background: Vision 

Vision is an inherently ill-posed cognitive (information-as-data-interpretation) problem, synonym for 

scene-from-image reconstruction and understanding. Encompassing both biological vision and computer 

vision (CV), where CV is superset-of Earth observation (EO) image understanding (EO-IU), i.e., 

relationship ‘CV  EO-IU’ holds, vision is very difficult to solve because: (i) non-deterministic polynomial 

(NP)-hard in computational complexity, (ii) inherently ill-posed in the Hadamard sense, because affected 

by: (I) a 4D-to-2D data dimensionality reduction, from the 4D geospatial-temporal scene-domain to the 

(2D, planar) image-domain, and (II) a semantic information gap, from ever-varying sub-symbolic sensory 

data (sensations) in the image-domain to stable symbolic percepts in the mental model of the physical world 

(modeled world, world ontology, real-world model). Since it is inherently ill-posed, vision requires a priori 

knowledge in addition to sensory data to become better posed for numerical solution. 

 

Satellite Image Automatic Mapper™ software process and output products 

The Satellite Image Automatic Mapper™ (SIAM™) software executable is a lightweight computer 

program which is fully automatic, requiring neither human-machine interaction nor training data to run, 

and suitable for: (i) prior knowledge-based multi-sensor multi-spectral (MS) reflectance space 

hyperpolyhedralization (discretization, quantization, see Fig. 1) into static (non-adaptive to data) discrete 

and finite vocabularies of MS color names, where four color name vocabularies featuring coarse, 

intermediate, “shared” (inter-sensor) and fine granularities are interrelated, featuring inter-level parent-

child relationships, refer to Table 1 to Table 4, (ii) connected-component (superpixel, image-object, 

segment) detection in the multi-level map of color names, see Fig. 2, and (iii) vector quantization (VQ) 

quality assessment, specifically, root-mean-square error (RMSE) estimation, in a piecewise-constant MS 

image approximation (reconstruction, object-mean view) [1], [2].  
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Fig. 1. Unlike a multi-spectral (MS) reflectance space hyperpolyhedralization, difficult to think of and impossible to 

visualize when the number of channels is superior to three, a monitor-typical Red-Green-Blue (RGB) data cube 

polyhedralization is intuitive to think of and straightforward to display. For example, based on psychophysical 

evidence, human basic color (BC) names can be mapped onto a monitor-typical RGB data cube. Central to this 

consideration is Berlin and Kay’s landmark study in linguistics of a “universal” inventory of eleven BC words in 

twenty human languages: black, white, gray, red, orange, yellow, green, blue, purple, pink and brown. In the RGB 

data cube, the vocabulary of eleven BC names in human languages is equivalent to a mutually exclusive and totally 

exhaustive set of polyhedra, neither necessarily convex nor connected. 

 

Fig. 2. One segmentation map is deterministically generated from one multi-level (e.g., binary) image, such as a 

thematic map, but the vice versa does not hold, i.e., many multi-level images can generate the same segmentation 

map. To accomplish the deterministic (unequivocal, well-posed) task of segmentation map generation from a multi-

level image, the well-posed (deterministic) two-pass connected-component multi-level image labeling algorithm 

requires two raster scans of the input data set. In the figure above, as an example, nine image-objects/segments S1 to 

S9 can be detected in the 3-level thematic map shown at left. Each segment (image-object, connected-component) 

consists of a connected set of pixels sharing the same multi-level map label. An image-object is either (0D) pixel, (1) 

line or (2D) polygon. Each stratum/layer/level consists of one or more segments. For example, stratum Vegetation (V) 

consists of two disjoint segments, S1 and S8. In general, a stratum is a multi-part polygon. Hence, in any multi-level 
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(categorical, nominal, qualitative) image/map domain, three labeled spatial primitives (spatial units) co-exist and are 

provided with parent-child relationships: (i) pixel with a level-label, e.g., V as vegetation, and a pixel-specific 

identifier (ID, e.g., the row-column coordinate pair), (ii) connected-component (segment), either 0D, 1D, or 2D, with 

a level-specific label e.g., V as vegetation, and a segment ID, e.g., S8, and (iii) stratum (multi-part polygon) with a 

level-specific label, equivalent to a stratum/layer/level ID, e.g., V as vegetation, whose multi-part polygons are S1 and 

S8.  

Table 1. The SIAM™ system of six sub-systems. Summary of input bands and output spectral categories (color names 

in a multi-spectral reflectance space, MS). Acronyms: Landsat/ SPOT/ AVHRR/ AATRS/ QuickBird/ DMC-like 

SIAM™ = L/ S/ AV/ AA/ Q/ D-SIAM™. Bands: B = Blue, G = Green, R = Red, NIR = Near Infrared, MIR = Medium 

Infrared, TIR = Thermal Infrared. (*) Employed in sensor-independent bi-temporal post-classification land cover 

change/no-change detection.  

SIAM™, 

r88v7 

Input Bands 

(B: Blue, G: Green, 

R: Red,  

NIR: Near Infra-

Red,  

MIR: Medium IR,  

TIR: Thermal IR) 

Preliminary Classification Map Output Products:  

Number of Output Spectral Categories. 

Fine 

Discretization 

Granularity 

Intermediate 

Discretization 

Granularity 

Coarse 

Discretization 

Granularity 

Inter-Sensor 

Discretization 

Granularity 

(*) 

L-SIAM™ 

7 bands – B, G, R, 

NIR, MIR1, MIR2, 

TIR 

96 48 18 

33 

S-SIAM™ 
4 bands – G, R, NIR, 

MIR1 
68 40 15 

AV-SIAM™ 
4 bands – R, NIR, 

MIR1, TIR 
83 43 17 

AA-SIAM™ 
5 bands – G, R, NIR, 

MIR1, TIR 
83 43 17 

Q-SIAM™ 
4 bands – B, G, R, 

NIR 
61 28 12 

D-SIAM™ 3 bands – G, R, NIR 61 28 12 

 

Table 2. Preliminary classification map’s legend, adopted by the Landsat-like SIAM (L-SIAM)™ at fine discretization, 

consisting of 96 spectral categories (refer to Table 1). Pseudo-colors of the spectral categories are grouped on the basis 

of their spectral end-member, e.g., “bare soil or built-up”, or parent spectral category, e.g., “high” leaf area index (LAI) 

vegetation types. The pseudo-color of a spectral category is chosen so as to mimic natural colors of pixels belonging to 

that spectral category.  

 

"High" leaf area index (LAI) vegetation types (LAI values decreasing left to right)

"Medium" LAI vegetation types (LAI values decreasing left to right)

Shrub or herbaceous rangeland

Other types of vegetation (e.g., vegetation in shadow, dark vegetation, wetland) 

Bare soil or built-up

Deep water, shallow water, turbid water or shadow

Thick cloud and thin cloud over vegetation, or water, or bare soil

Thick smoke plume and thin smoke plume over vegetation, or water, or bare soil

Snow and shadow snow

Shadow

Flame

Unknowns
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Table 3. Preliminary classification map’s legend, adopted by the AVHRR-like SIAM (AV-SIAM)™ at fine 

discretization, consisting of 83 spectral categories (refer to Table 1). Pseudo-colors of the spectral categories are grouped 

on the basis of their spectral end-member, e.g., “bare soil or built-up”, or parent spectral category, e.g., “high” leaf area 

index (LAI) vegetation types. The pseudo-color of a spectral category is chosen so as to mimic natural colors of pixels 

belonging to that spectral category.  

 

 

Table 4. Preliminary classification map’s legend, adopted by the Quickbird-like (Q-SIAM)™ at fine discretization 

granularity, consisting of 61 spectral categories (refer to Table 1). Pseudo-colors of the spectral categories are grouped 

on the basis of their spectral end-member, e.g., “bare soil or built-up”, or parent spectral category, e.g., “high” leaf area 

index (LAI) vegetation types. The pseudo-color of a spectral category is chosen so as to mimic natural colors of pixels 

belonging to that spectral category.  

 

 

Since it is physical model-based, the SIAM expert system for MS color naming requires as input a 

spaceborne/airborne MS image provided with a physical meaning, namely, with a physical unit of 

radiometric measure. In more detail, SIAM requires as input a MS image radiometrically calibrated into 

top-of-atmosphere (TOA) reflectance (TOARF), surface reflectance (SURF) or surface albedo values, 

where SURF is a special case of TOARF in clear sky and flat terrain conditions, i.e., TOARF  SURF, in 

fact, TOARF  SURF + atmospheric “noise” + topographic “noise”. 

It is worth mentioning that, in EO-IU  CV tasks, MS color names in the (2D) image-domain should never 

ever be confused with target land cover (LC) classes pertaining to the 4D spatial-temporal scene-domain, 

refer to Table 5. Vision, in general, encompassing CV as a special case, is inherently ill-posed and requires 

a priori knowledge in addition to sensory data to become better posed for numerical solution. An important 

source of a priori knowledge considered necessary-but-not-sufficient to accomplish CV tasks in operating 

mode is the binary relationship R: A  B  A  B from set A = VocabularyOfColorNames to set B = 

LegendOfObjectClassNames, where  A  B is the 2-fold Cartesian product between sets A and B, refer to 

Table 5 [1], [2].  

"High" leaf area index (LAI) vegetation types (LAI values decreasing left to right)

"Medium" LAI vegetation types (LAI values decreasing left to right)

Shrub or herbaceous rangeland

Other types of vegetation (e.g., vegetation in shadow, dark vegetation, wetland) 

Bare soil or built-up

Deep water, shallow water, turbid water or shadow

Thick cloud and thin cloud over vegetation, or water, or bare soil

Snow and shadow snow

Shadow

Flame

Unknowns

"High" leaf area index (LAI) vegetation types (LAI values decreasing left to right)

"Medium" LAI vegetation types (LAI values decreasing left to right)

Shrub or herbaceous rangeland

Other types of vegetation (e.g., vegetation in shadow, dark vegetation, wetland) 

Bare soil or built-up

Deep water or turbid water or shadow

Smoke plume over water, over vegetation or over bare soil

Snow or cloud or bright bare soil or bright built-up

Unknowns
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Table 5. Example of a binary relationship R: A  B  A  B from set A = VocabularyOfColorNames, with cardinality 

|A| = a = ColorVocabularyCardinality = 11, and the set B = LegendOfObjectClassNames, with cardinality |B| = b = 

ObjectClassLegendCardinality = 3, where A  B is the 2-fold Cartesian product between sets A and B. The Cartesian 

product of two sets A  B is a set whose elements are ordered pairs. The size of A  B is rows  columns = a  b. The 

dictionary LegendOfObjectClassNames is a superset of the typical taxonomy of land cover (LC) classes adopted by 

the remote sensing (RS) community. “Correct” entry-pairs (marked with ) must be: (i) selected by domain experts, 

based on a hybrid combination of deductive prior beliefs with inductive evidence from data, and (ii) community-

agreed upon, to be used by members of the community. 

   
Target classes of individuals (entities in a conceptual model for knowledge 

representation built upon an ontology language) 

   Class 1, Water body Class 2, Tulip flower Class 3, Italian tile roof 

Basic color 

(BC) names 

black     

blue     

brown     

grey     

green     

orange     

pink      

purple     

red     

white      

yellow     

 

Largely oversighted by the RS and CV literature, an undisputable observation (true-fact) is that, in general, 

spatial information dominates color information in vision [1], [2]. This commonsense knowledge is 

obvious, but not trivial. On the one hand, it may sound awkward to many readers, including RS experts and 

CV practitioners. On the other hand, it is acknowledged implicitly by all human beings wearing sunglasses: 

human panchromatic vision is nearly as effective as chromatic vision in scene-from-image reconstruction 

and understanding. This true fact means that spatial information dominates both the 4D geospatial-temporal 

scene-domain and the (2D) image-domain involved with the cognitive task of vision. 

By discretizing (numerical) color values, specifically, MS reflectance values, into (categorical) color 

names, equivalent to hyperpolyhedra in a MS reflectance hypercube, SIAM copes with secondary 

colorimetric information exclusively, i.e., it ignores spatial information components, either topological or 

non-topological, typically dominating color information in both the scene-domain and the image-domain.  

It means that, in the remote sensing (RS) common practice, the prior knowledge-based SIAM decision tree 

for MS color naming contributes towards filling the semantic information gap from sub-symbolic pixels to 

semantic image-objects (either 0D point, 1D line or 2D polygon) by means of semi-symbolic color names, 

equivalent to a hidden, non-observable categorical variable [1], [2]. On a standalone basis, SIAM is suitable 

for (independent, third-party) validation of MS sensory data, acquired by any past, present or future MS 

imaging sensor and radiometrically calibrated into TOARF, SURF or surface albedo values. In a multi-

stage EO-IU system, capable of colorimetric and spatial analytics based on a hybrid (combined deductive/ 

top-down/ physical model-based and inductive/ bottom-up/ statistical model-based) convergence-of-
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evidence approach to scene-from-image reconstruction and understanding, the SIAM deductive color 

naming works as first-stage CV subsystem, suitable for secondary color analysis preliminary to dominant 

spatial analytics. 

 

Fig. 3. Proposed minimally dependent and maximally informative (mDMI) set of outcome and process (OP) 

quantitative quality indicators (OP-Q2Is). The SIAM software toolbox for MS color naming, superpixel detection and 

vector quantization (VQ) quality assessment can be considered in “operating mode” because it scores “high” (or 

medium) in every index of the mDMI set of OP-Q2Is. 

 

SIAM outcome and process quantitative quality indicators 

By scoring “high” in a minimally dependent and maximally informative (mDMI) set of outcome and 

process (OP) quantitative quality indicators (OP-Q2Is), the SIAM lightweight computer program can be 

considered suitable for CV applications in “operating mode”, see Fig. 3. 

In terms of degree of automation, SIAM is "fully automatic", i.e., it requires neither user-defined parameters 

nor training data samples to run.  

In terms of computational complexity, SIAM is near real-time. In more detail, its computational complexity 

increasing linearly with image size. For example, on a standard laptop computer, it requires four minutes 

to map a Landsat scene onto four color maps (at coarse, intermediate, shared and fine granularities, see 

Table 1) plus segmentation maps plus VQ error maps. 
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In terms of scalability/interoperability, SIAM is eligible for use with any past, existing or future planned 

spaceborne/airborne MS imaging sensor, irrespective of its spatial resolution, as far as a MS image file is 

provided with a calibration metadata file. 

In terms of robustness to changes in input data, SIAM was validated by independent means at continental 

scale. In particular, the degree of match of the SIAM pre-classification maps, automatically generated from 

a 30 m resolution 2006 Landsat image mosaic of the conterminous Unites States (CONUS), with the U.S. 

Geological Survey (USGS) 30 m resolution 2006 National Land Cover Data (NLCD) map, is 95.41  0%, 

with a Categorical Variable Pair Similarity Index (CVPSI) value of 44.37%. This metrological CVPSI value 

means that the information gap from sensory data to LC classes is filled up to 44.37%, based on prior 

knowledge exclusively, in near real-time and without user interactions, at the first stage of a hybrid 

(combined deductive and inductive) EO-IU system architecture, refer to Fig. 4 [1], [2]. 

 

 

Fig. 4. Six-stage hybrid (combined deductive and inductive) feedback EO image understanding (EO-IU) system 

design, identified as QuickMap™ technology, where acronym SIAM stays for Satellite Image Automatic Mapper 

(SIAM), a lightweight computer program for MS reflectance space hyperpolyhedralization into a static vocabulary of 

MS color names, connected-component (superpixel) detection and vector quantization (VQ) quality assessment. The 

proposed six-stage hybrid EO-IU system architecture is based on a convergence-of-evidence approach to vision, 

consistent with Bayesian naïve classification [1], [2]. Alternative to inductive feedforward EO-IU system architectures 

adopted by the RS mainstream, such as Deep Convolutional Neural Networks (DCNNs) trained from data end-to-end, 

the proposed six-stage hybrid EO-IU system design complies with the engineering principles of modularity, hierarchy 

and regularity considered necessary for scalability in structured system design. Its hierarchy comprises a first-stage 

general-purpose, sensor-, application- and user-independent EO image understanding (classification) subsystem, 
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followed by a second-stage sensor-, application- and user-specific EO image understanding subsystem. This two-stage 

EO-IU system design is fully consistent with the standard two-stage fully-nested Land Cover Classification System 

(LCCS) taxonomy promoted by the Food and Agriculture Organization (FAO) of the United Nations, where a first-

stage 3-level 8-class Dichotomous Phase (DP) is preliminary to a second-stage Modular Hierarchical Phase (MHP) 

[9]. For the sake of visualization, each of the six EO data processing stages plus stage-zero for EO data pre-processing 

(enhancement) is depicted as a rectangle with a different color fill. Visual evidence stems from multiple information 

sources, specifically, numeric color values quantized into categorical color names, local shape, texture and inter-object 

spatial relationships, either topological or non-topological. An example of first-stage general-purpose, user- and 

application-independent EO image classification taxonomy required by an ESA EO Level 2 Scene Classification Map 

(SCM) product [8] is the 3-level 8-class FAO LCCS-DP legend, in addition to quality layers cloud and cloud–shadow. 

Second-stage EO image classification is user- and application-specific, where an SCM product of Level 3 or superior 

is provided with a map legend consistent with the FAO LCCS-MHP taxonomy [9].  

Application domains 

Rather than as a standalone EO-IU system, suitable for (independent, third-party) validation of MS sensory 

data acquired by any past, present or future MS imaging sensor and radiometrically calibrated into TOARF, 

SURF or surface albedo values, the SIAM expert system for MS color naming is conceived as a symbolic 

syntactic pre-attentive vision first stage of a novel hybrid (combined deductive/ top-down/ physical model-

based and inductive/ bottom-up/ statistical model-based) EO-IU system design, see Fig. 4. In this hybrid 

multi-stage EO-IU system architecture, the SIAM color space discretization first stage provides prior 

knowledge-based (deductive) initial conditions to a high-level hybrid MS image classifier. 

In addition to classification purposes, the first-stage SIAM semi-symbolic output maps in MS color names, 

automatically generated from an input EO image, can be adopted as input by inherently ill-posed EO image 

pre-processing (enhancement) tasks, see Fig. 4, such as atmospheric correction, topographic correction, 

bidirectional reflectance distribution function (BRDF) effect correction, image mosaicking and image pair 

co-registration, to become better posed (class-conditioned, driven-by-prior-knowledge, stratified, masked) 

for numerical treatment [1], [2], [3], [4], [5], see Fig. 5. 
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Fig. 5. Ideal ESA EO Level 2 product generation design [8] as a hierarchical alternating sequence of: (A) hybrid 

(combined deductive and inductive) radiometric enhancement of multi-spectral (MS) dimensionless digital numbers 

(DNs) into top-of-atmosphere reflectance (TOARF), surface reflectance (SURF) values and spectral albedo values 

corrected in sequence for (1) atmospheric, (2) adjacency, (3) topographic and (4) BRDF effects, and (B) hybrid 

(combined deductive and inductive) classification of TOARF, SURF and spectral albedo values into a sequence of 

ESA EO Level 2 scene classification maps (SCMs), whose legend (taxonomy) of community-agreed land cover (LC) 

class names, in addition to quality layers cloud and cloud–shadow, increases hierarchically in semantics and mapping 

accuracy. An implementation in operating mode of this EO image pre-processing system design for stratified 

topographic correction (STRATCOR) is presented and discussed in [3]. In comparison with this desirable system 

design, let us consider that, for example, the existing Sen2Cor software toolbox, developed by ESA to support a 

Sentinel-2 sensor-specific Level 2 product generation on the user side [8], adopts no hierarchical alternating approach 

between MS image classification and MS image radiometric enhancement. Rather, ESA Sen2Cor accomplishes, first, 

one SCM generation from TOARF values based on a per-pixel (spatial context-insensitive) prior spectral knowledge-

based decision tree. Next, a class-conditional MS image radiometric enhancement of TOARF into SURF values 

corrected for atmospheric, adjacency and topographic effects is accomplished in sequence, stratified by the same SCM 

product generated at first stage from TOARF values. 

 

Technological innovations 

To the best of these authors’ knowledge, the SIAM lightweight computer program is the sole expert system 

of systems for MS color naming proposed in the RS literature and/or in EO image processing commercial 

software toolboxes to be considered in operating mode, see Fig. 3, capable of guaranteeing interoperability 

(transferability) across past, present and future MS imaging sensors, whose sole requirement is to deliver 

MS imagery provided with a metadata calibration file, in compliance with the intergovernmental Group on 

Earth Observations (GEO)-Committee on Earth Observation Satellites (CEOS) Quality Accuracy 

Framework for Earth Observation (QA4EO) Calibration/Validation (Cal/Val) requirements [6]. 
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Research and development (R&D) of a CV  EO-IU system in operating mode is necessary-but-not-

sufficient pre-condition for multi-sensor multi-temporal and multi-angular EO big data cube analytics as 

part-of the GEO’s visionary goal of a Global EO System of Systems (GEOSS) [6], never accomplished to 

date by the RS community. The general notion of GEOSS encompasses open sub-problems, such as 

semantic content-based image retrieval (SCBIR) + semantics-enabled information/knowledge discovery 

(SEIKD) = artificial general intelligence (AI) for Data and Information Access Services (AI4DIAS) at the 

ground segment. Dependence relationship CV in operating mode  EO-IU as part-of GEOSS,  i.e., ‘CV  

EO-IU in operating mode  [EO-SCBIR + SEIKD = AI4DIAS]  GEO-GEOSS’, means that the GEOSS 

open problem, together with its still-unsolved (open) sub-problems of SCBIR and SEIKD, cannot be 

accomplished until the necessary-but-not-sufficient pre-condition of CV  EO-IU in operating mode is 

fulfilled in advance, see Fig. 6. 

 

 

Fig. 6. In agreement with the standard Unified Modeling Language (UML) for graphical modeling of object-oriented 

software, relationship part-of, denoted with symbol ‘’ pointing from the supplier to the client, should not to be 

confused with relationship subset-of, ‘’, meaning specialization with inheritance from the superset to the subset. A 

National Aeronautics and Space Administration (NASA) EO Level 2 product is defined as “a data-derived geophysical 

variable at the same resolution and location as Level 1 source data”. Herein, it is considered part-of an ESA EO Level 

2 product defined as: (a) a single-date multi-spectral (MS) image whose digital numbers (DNs) are radiometrically 

corrected into surface reflectance (SURF) values for atmospheric, adjacency and topographic effects, stacked with (b) 

its data-derived general-purpose, user- and application-independent scene classification map (SCM), whose thematic 

map legend includes quality layers cloud and cloud–shadow. In this paper, ESA EO Level 2 product [8] is regarded 

as an information primitive to be accomplished by Artificial Intelligence for the Space segment (AI4Space), such as 

in future intelligent small satellite constellations, rather than at the ground segment in an AI for Data and Information 

Access Services (AI4DIAS) framework. In this graphical representation, additional acronyms of interest are computer 

vision (CV), whose special case is EO image understanding (EO-IU) in operating mode, semantic content-based image 

retrieval (SCBIR), semantics-enabled information/knowledge discovery (SEIKD), where SCIR + SEIKD is 

considered synonym for AI4DIAS, and Global Earth Observation System of Systems (GEOSS), defined by the Group 

on Earth Observations (GEO). Our working hypothesis postulates that the following dependence relationship holds 

true:  

‘NASA EO Level 2 product  ESA EO Level 2 product = AI4Space  EO-IU in operating mode  CV  

[EO-SCBIR + SEIKD = AI4DIAS]  GEO-GEOSS’.  
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This equation means that GEOSS, whose part-of are the still-unsolved (open) problems of SCBIR and SEIKD, cannot 

be achieved until the necessary-but-not-sufficient pre-condition of CV in operating mode, specifically, systematic 

ESA EO Level 2 product generation, is accomplished in advance. Since it is inherently ill-posed, vision requires a 

priori knowledge in addition to sensory data to become better posed for numerical solution. If the aforementioned 

working hypothesis holds true, then the complexity of SCBIR + SEIKD is not inferior to the complexity of vision, 

acknowledged to be inherently ill-posed and non-deterministic polynomial (NP)-hard. To make the inherently-ill-

posed CV problem better conditioned for numerical solution, a CV system is required to comply with human visual 

perception. In other words, a CV system is constrained to include a computational model of human vision, i.e., ‘Human 

vision  CV’. Hence, dependence relationship:  

‘Human vision  CV  EO-IU in operating mode  NASA EO Level 2 product  ESA EO Level 2 product 

 [EO-SCBIR + SEIKD = AI4DIAS]  GEO-GEOSS’ 

becomes our working hypothesis. Equivalent to a first principle (axiom, postulate), this equation can be considered 

the first original contribution, conceptual in nature, to the new notion of DIAS 2.0 = AI4DIAS.  

 

In a future DIAS 2.0 = AI4DIAS = EO-SCBIR + SEIKD DIAS 2nd-generation, see Fig. 6, an EO-IU  CV 

 AI module in operating mode, capable of qualitative/equivocal information-as-data-interpretation, must 

be encapsulated into the traditional DIAS 1.0 platform, typically dealing with the quantitative/unequivocal 

notion of information-as-thing, such as data communication/transmission tasks, to provide the EO big data 

cube, characterized by the five Vs of volume, velocity, variety, veracity and value [7], with an AI eligible 

for transforming sensory EO big data into value-adding information products and services (VAPS). In 

practice, AI4DIAS = DIAS 2.0 is expected to recover from the data-rich information-poor (DRIP) 

syndrome affecting the current DIAS 1.0 generation, where no CV system in operating mode provides each 

EO image stored in the database with meanings (semantics), such as an EO data-derived Level 2 Scene 

Classification Map (SCM) in compliance with the ESA EO data-derived Level 2 information product 

definition [8]. Once provided with an EO-IU subsystem in operating mode, an AI4DIAS 2.0 is expected to 

be provided with a graphic user interface (GUI) completely different from GUIs implemented in DIAS 1.0. 

The former must bring to surface, i.e., up to the user attention, information in general and semantics in 

particular, which is available by default in the AI4DIAS 2.0 cube, starting from EO data-derived Level 2 

SCMs [8]. Availability of semantics at the GUI level supports symbolic human reasoning, such as 

“intelligent” semantic content-based data retrieval, namely, EO-SCBIR, in addition to SEIKD activities, 

synonym for DIAS 2.0 capable of incremental learning, a.k.a. ever-increasing “intelligence”. For example, 

multi-source single-date EO data-derived Level 2 SCMs can be adopted as input to infer higher-level multi-

temporal semantic information/knowledge, such as post-classification change/no-change LC class detection 

in EO data-derived Level 2 SCM time-series. 

 

User cases 

Z-GIS created a WebMap service on an ONDA Virtual Machine (VM) showing use cases of the Landsat-

like SIAM (L-SIAM) map at fine color discretization, consisting of 96 color names, see Table 1. 

This WebMap service shows: 

 An area of interest (AOI) identified in Europe where to select multi-temporal multi-source EO image 

acquisitions. 
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 The multi-source SIAM capabilities (in a dockerized software solution) constrained by full 

automation and fast processing, in linear computational complexity with image size, where the data 

mapping problem can be scaled up easily to cope with changes in sensor specifications. On the 

ONDA VM platform, SIAM required 7 minutes on average to map a Sentinel-2 tile into 4 color maps 

+ 4 segmentation maps + 1 VQ error estimates, without running SIAM in parallel. Using more CPUs, 

the processing time per Sentinel-2 tile can be reduce to around 2 minutes. 

 Convincing SIAM results for multi-source single-date EO imagery and for post-classification 

change/no-change detection between two single-sensor or multi-sensor image time-series. 

 Convincing SIAM mapping of cloud/cloud-shadow into candidate areas, compared to the ESA 

Sentinel-2 Level-1C Cloud masks and ESA EO Level 2 Sentinel 2 (atmospheric, topographic and 

adjacency) Correction Prototype Processor (Sen2Cor) [8]. 

 … and much more, depending on the application case, e.g., “intelligent” (driven-by-knowledge, 

stratified, class-conditional) vegetation (greenness) index detection, class-conditional biophysical 

variable (e.g., leaf area index, LAI) estimation, etc. 

The list of input EO data sets and EO data-derived information products adopted by the WebPam service 

for comparison with SIAM is the following. 

 

 Sentinel-2 MSI 

o 58 Sentinel-2 tiles at 10 m resolution: 29 for an overpass from Northern Germany to Italy on 

30/03/2019 and the same area acquired on 19/04/2019. 

 Landsat-8 OLI. 

o 3 Landsat-8 images acquired on 21/04/2019. 

 For comparison purposes with the SIAM output map of semi-symbolic color names, mosaic of 29 ESA 

Sen2Cor Level 2 SCMs, 20m spatial resolution, Sentinel-2 data-derived on 19/04/2019. The Sen2Cor 

SCM legend consists of four different classes for clouds, including cirrus, and six different LC classes, 

namely, shadows, cloud shadows, vegetation, soils/deserts, water and snow. 

 For comparison purposes with the SIAM output map of semi-symbolic color names, mosaic of 29 ESA 

Sentinel-2 Level 1C Cloud Masks, Sentinel-2 data-derived on 19/04/2019. The legend of the Sentinel-

2 Level 1C Cloud Masks includes opaque clouds and cirrus.  
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